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On the stability of flow in an elliptic pipe 
which is nearly circular 
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The linear stability of Poiseuille flow in an elliptic pipe which is nearly circular is 
examined by regarding the flow as a perturbation of Poiseuille flow in a circular pipe. 
We show that the temporal damping rates of non-axisymmetric infinitesimal distur- 
bances which are concentrated near the wall of the pipe are decreased by the ellipticity. 
I n  particular we estimate that if the length of the minor axis of the cross-section of the 
pipe is less than about 964% of that of the major axis then the flow will be unstable 
and a critical Reynolds number will exist. Also we calculate estimates of the ellipti- 
cities which will produce critical ReynoIds numbers ranging from 1000 upwards. 

1. Introduction 
Hocking (1977) has considered the stability of steady flow in a straight pipe of 

elliptic cross-section when the ellipticity e is close to 1,  so that the length of the major 
axis of the cross-section is much larger than that of the minor axis. For such a pipe 
the flow in the central region near the minor axis is almost plane Poiseuille flow between 
the slightly curved boundaries a t  the ends of the minor axis. Moreover the stability 
characteristics of the flow are dominated by this central region so t'hey may be ob- 
tained, as Hocking showed, by a perturbation away from plane Poiseuille flow. With 
a Reynolds number based on the length of the minor axis, he found that the critical 
Reynolds number increased as e decreased below 1 by an amount proportional to 
(1  - e)*.  This increase in the critical Reynolds number is only to be expected in view 
of the fact that as e decreases towards zero the pipe becomes more and more circular 
and it is generally accepted that circular pipe flow is stable to infinitesimal disturbances. 

The situation, then, is that elliptic pipe flow is linearly unstable if e is close to 1 
whereas i t  is stable if e is equal to 0. It seems likely therefore that there exists a critical 
value of e above which the flow will have a critical Reynolds number and below which 
the flow will be stable and there will be no such critical Reynolds number. The aim 
of this paper is to estimate this critical value of e and to verify that when e is small the 
effect of the ellipticity is to decrease the damping rate of an infinitesimal disturbance. 
So we approach the problem from the opposite end of the spectrum to that considered 
by Hocking, i.e. we take e to be small and determine the linear stability characteristics 
of the flow by a perturbation from circular pipe flow. In  what follows this procedure 
seems to be justified since the estimate which we obtain for the critical value of e is 
quite small. 

Linear stability theory for circular pipe flow is somewhat complicated in the sense 
that both axisymmetric and non-axisymmetric disturbaqes must be considered and 



234 A .  Davey 

by the fact that when the Reynolds number is large a disturbance may be concentrated 
either near the centre of the pipe, a ' centre ' mode, or near the wa.11 of the pipe, a ' wall ' 
mode, or may be distributed across the pipe if it has a sufficiently small axial wave- 
number, a 'distributed' mode. Since we shall perturb away from circular pipe flow 
we must be careful to  consider the effect of t,he ellipticity on all these types of distur- 
bance. Indeed we shall find that the key disturbance for the elliptic problem is a wall 
mode, whereas the least-damped disturbance for the circular problem is a distributed 
mode as pointed out by Gill (1973), who called a distributed mode an 1-mode. 

2. Linear stability of flow in a pipe with small ellipticity 
The steady flow whose stability we wish to examine is that of a viscous incompress- 

ible fluid flowing along a st,raight pipe of elliptic cross-Section under the action of a 
constant pressure gradient. The length of the semi-minor axis of the elliptic cross- 
section is a and the length of the semi-major axis is b ,  so that a < b and the ellipticity 
e is defined by 

a2 = b2(1 -e2).  (1) 

We suppose that, t,he centre-line speed of Poiseuille flow along the pipe is U,, so that 
t,he constant, pressure gradient needed to maintain the flow is 

where v is the kinematic viscosity of the fluid and p is its density. 
We choose a, U, and a/Uo as the characteristic scales of length, speed and time, 

respectively, with respect to which we make our quantities non-dimensional. The 
reference pressure is pvUJa. We use non-dimensional Cartesian co-ordinates (2, y, x )  
wit'h the x axis in the direction of the basic flow down the pipe and with the y and z 
axes in the directions of t,he major and minor axes respectively, so that the boundary 
of the pipe is 

(1  -e2) y2+z2 = 1 (2) 

and the steady flow down the pipe is given by 

U = l-(1-e2)y2-z2. (3) 

We shall also use polar co-ordinates ( r ,  0) in the cross-sectional plane defined by 

y = rcos0, z = rsin0, (4) 

so that ( x ,  r ,  8)  are cylindrical polars and hence the boundary of the pipe (2) may be 
written as 

r2 = (1 - e2 cos2 1 9 - 1  ( 5 )  

and also (3) becomes 
U = 1 - r2 - e2r2 cos2 0. 

We shall consider only linear stability theory and suppose that a disturbance will 
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grow or decay temporally without spatial modulation. Hence it suffices to express the 
fluid velocity Uo(u,, u,, u8) and the pressure (pvUo/a) B in the form 

u, = U + eEu(r, 0) + O ( E ~ ) ,  

U, = sEv(r, 0 )  + 0 ( c 2 ) ,  

B = P + eEp(r, 0) + O(e2) .  

U g  = cEw(r, 0) + 0 ( c 2 ) ,  
(7) 

I n  (7), E is a measure of the amplitude of the disturbance compared with that of the 
basic flow and 

E = exp {ia(x - ct)), (8) 

so that the disturbance has wavenumber a in the x direction, wave speed c, and tem- 
poral growth rate aci, where 

Also it should be understood that complex conjugates are to be added to the right- 
hand sides of (7) to cancel the imaginary terms. 

If (7) and (8) are substituted into the Navier-Stokes equations and the continuity 
equation then the terms of order 8 yield 

c = c,+zci. (9) 

I (9 + f) u - iap  = iaRe2r2 cos2 0u - 2Rr( 1 - e2 cos2 0) v - Re2r sin 28w, 

aP 2 aw 
pE4v - - = iaRe2r2 cos2 Bv + - - , 

ar r2 80 

1 aP 2 av 9 w  - - - = iaRe2r2 cos2 Ow - - - 
r 80 r2 a0 

and 
av v 1 aw 
-+-+iiau+-- = 0, 
ar r r a0 

where R = Uoa/v is the Reynolds number and the operator 9 is defined by 

The boundary conditions are 

(13) 

u = v = w = 0 when r = (1  -e2cos20)-*, 

au av aw - ae =-- aB w = - + v = - = o  when r = 0. ae a0 

We now expand the variables u, v, w and p and the eigenvalue c in powers of e2 as 
follows: 

u = uo+e2ul+e4u2+ ..., ( 1 4 4  

v = vo+e2v,+e4v2+ ..., (14b) 
w = wo+e2wl+e4w2+ ..., ( l a c )  

p = po+e2pl+e4p2+ ..., ( 1 4 4  
c = c,+e2cl+e4c2+ ... . (14e) 
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If we substitute these expansions into (lo)-( 13), clearly the leading-order terms 
uo, vo, wo, po and co are just the solution of the linear stability equations for circular 
pipe flow. Hence 

where n is an integer and Go, Go, Go, Po and co are the solutions of the linear ordinary 
differential Orr-Sommerfeld system 

{uo, v07 ujo, p0> = {uo(r), Go(% Go(r), Vo(r ) }  exp w e ) ,  (15) 

where D = d/dr and the operator L is defined by 

+a2 - iaR( l  - r 2 - c o ) .  
d2 1 d l + n 2  L=-+- - -  - 
dr2 r d r  ( r2 ) 

The boundary conditions for (16) and (1  7 )  are 

(18) 

_ - -  uo = no = too = 0 when 

inii, = inGo-Go = inco+Go = inpo = 0 

r = 1, 

when r = 0; 

also Go, Go, Go and Po must be finite as r+O. Equation (16) subject to the boundary 
conditions (18) can be solved numerically to determine Go, Eo, Go, po and the eigenvalue 
co for an arbitrary choice of the integer n; see, for example, Lessen, Sadler & Lin 
(1968) and also Salwen & Grosch (1972). Note that the boundary condition a t  r = 0 
takes rather special forms when n 0 or 1, but that otherwise it reduces to 

- uo = Go = Go = po = 0. 

In  general the least-damped disturbances are those with n = 1 (but see Gill 1973), in 
which case the boundary condition a t  r = 0 becomes Go = Go + iGo = po = 0,  with Go 
and Go finit'e. 

From (lo),  (1 1) and (14) a t  order e2 we have 

(To + $) u1 + 2Rrvl - iapl = (ia(r2 C O S ~  8 - c l )  uo + 2r cos2 02,, - r sin 28W0} Reino 

2 aw ap 
r2  a0 ar 

T0v,- -  - ' - l  = iaR(r2cos2e-c1)Goein0, 

and 
an1 211 i aw 
-+++iau1+--1 = 0, 
ar r r ae 

where the operator To is the same as 9 [see (la)], but with c replaced by co. Also, 
from (13) and (14) the boundary conditions for ul, nl, w1 and p1 are 

(ul, vl, wl) = - 4 cos20(U& EA, FA) cine when r = 1 ,  I 

where a prime denotes differentiation with respect to r .  
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The 6' dependence of the forcing terms in (19) and (21) may be written as linear 
combinations of exp {ins}, exp {i(n + 2) 6') and exp {i(n - 2) O} so we can seek a solution 
for u,, v,, w1 and p ,  which is a linear combination of these three quantities. When we 
seek that part of the solution which is proportional to exp {ins}, the partial differential 
operator for the homogeneous part of (19) becomes the same as the ordinary differen- 
tial operator in (16) and so has {uo,vo,wo,po} as eigensolutions. Hence we can use 
adjoint theory to determine c1 and thus find the leading-order effect ofthe ellipticity 
on the rate of decay of the disturbance. 

From (19) and (20) i t  follows that the vector equation for that part of the solution 
for u,, v,, w, and p ,  which is proportional to exp {ins} is 

L + l / r 2  2Rr 0 - ia RrE, 

0 ' (i) = iaR(+rP1c,) 6) + ( , 0 2inlr2 L 

ia D + l / r  i n l r  0 

(22) 

and this equation will have a solution only if the right-hand side is orthogonal to the 
solution space of the left-hand operator. I n  order to determine this condition we must 
find the solution of the associated adjoint problem 

/ L +  l / r 2  0 0 

L 2in/r2 - D  

-ia D + l / r  - in / r  0 

with boundary conditions 

(24) 
u, = v, = w, = 0 

inu, = inv, +- w, = inw, - v, = inp, = 0 

Also, if n = 0 or n = 1 then u,, v,, w, and p a  must be finite as r -+ 0. 
We solve (23) and (24) numerically and check that the new value which we obtain 

for co is close to the corresponding value found from the Orr-Sommerfeld formulation 
(16)-(18). Having found u,, v,, w, and p a  we now left-multiply (22) by 

when r = 1 ,  

when r = 0. 

{rua, rva, rw,, rp,P,)' 

and integrate from r = 0 to r = 1 to obtain 

i 
4aR j: r3(U0 u, + Go v, + Go w,) dr - - r25,, u, dr + - [Ui u: + 

2 ( 2 5 )  
c, = a 0  S' 

j: r(U,u, + G0v, + @owa) dr 

so that the temporal growth rate of the disturbance is given by 

u = a{ - ia(co + e2c,)} + O(e4) 

= acOi + e2acli + O(e4). 
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Thus to leading order the effect of the ellipticity on the growth rate is determined by 
the value of c, as calculated from (25). We expect that cli will be positive, so that the 
effect of the ellipticity can lead to instability. 

Once c1 has been found there is no difficulty in principle in successively calculating 
higher-order terms in (14a-e), such as the coefficient c2 of the term of order e4 in (14e). 
In practice, however, this is a formidable task because the number of differential 
equations which must be solved numerically increases by an order of magnitude every 
time an extra term in each of (14a-e) is required. 

3. Numerical results 
Numerical solutions of the ordinary differential equations (16) and (23) were ob- 

tained by Runge-Kutta integration using a shooting method in a very similar manner 
to that described by Garg & Rouleau (1972), although we also used orthonormalization 
so that we could do calculations for much larger values of aR. 

To integrate the Orr-Sommerfeld system (1 6),  which is of seventh order, we first 
reduced it to a sixth-order system by differentiating the fourth row of ( 1  6) and sub- 
tracting it from the second row so that the second row is replaced by 

Initially, near r = 0,  it  is necessary to use a power-series expansion before the Runge- 
Kutttt integration is begun. When n =i= 0 the leading terms in the expansion are of the 
form - 

uo = rn(al + a2r2 + . . .), 
v0 = r"-l(b,+b2r2+ ...), 

Po = rn( f, + f i r 2  + . . .), 

- 

- - - m - 1  ( d , + d 2 r 2 +  ...), 

where d, = ib, and a,, b,, d,, f2 and the coefficients of the higher-order terms can 
easily be found as linear functions of a,, b ,  and f,. The solutions are therefore charac- 
terized by the three quantities a,, b,  and f, so three integrations are begun from some 
small value of r with {a,, h,, f,} = {1,0,0}, {0,1,0} and (0, 0,1>. The three solutions 
generated by these starting conditions are then orthonormalized when necessary. 
The procedure is similar for n = 0 although then (1 6) reduces to a fourth-order system 
and only two independent solutions need be generated and orthonormalized. 

To integrate the adjoint system (23) we also first reduce it from seventh to sixth 
order by differentiating the continuity equation with respect to r and subtracting it 
from the second row of (23) so that this row is replaced by 

+iaR( l - r2 -co )  (29) 

A similar expansion to (28) is used for r small and then the procedure is just as described 
above for the Orr-Sommerfeld system. [If n $. 0 then d, = - i b ,  in the expansion 
corresponding to (28).] 

Before we discuss the numerical results in detail let us recall that our principal aim 
is to obtain an estimate for the critical value of e, i.e. the value above which there will 
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be a critical Reynolds number but below which the flow will be stable. A necessary pre- 
liminary to achieving this aim is to determine, given a large fixed value of R, for which 
type of disturbance the effect of the ellipticity will be most likely to lead to instability. 

To answer this question, for each value of R shown in table 1 we calculated co and 
c1 for a very wide range of values of a, for n = 0 , 1 , 2  and several larger values and for 
both the first few centre modes, wall modes and distributed modes. For each pair of 
values (R, n) we then found the smallest possible value of - coi/cli  as a was varied, 
each kind of mode (centre, wall and distributed) being considered. It is these values 
of - coi/cli which are shown in table 1 .  

The reason why we are particularly interested in the smallest possible value of 
-coi/cli is as follows: given R and n, if we ignore the terms of order e4 in (26) then a 
disturbance will be unstable if coi + e2cli > 0, i.e. if e > emin, where, as a first approxi- 
mation, we define 

eLin = smallest possible value of - coi/cli for R, n fixed. (30) 

Since coi < 0 we need cli > 0 for emin to be real and we find that this is always the case. 
The first fact which we were able to establish numerically was that for all values 

of n the centre modes are only very slightly affected by the ellipticity of the boundary. 
This is presumably because the centre modes are concentrated near the centre of the 
pipe so one would not expect them to be affected very much by the slight distortion 
of a distant boundary. (Nevertheless the distortion of the boundary does affect the 
curvature of the velocity profile of the basic steady flow near the centre-line so this 
argument is not entirely convincing.) Since the wall modes are concentrated near the 
boundary they will be affected much more by the ellipticity than the centre modes. 
All the values of -coi/cli  found for the centre modes are so very large that we shall 
not discuss these modes any further, even though they are less damped than the wall 
modes for circular pipe flow. 

Next we found that for the axisymmetric case n = 0 the values of - coi/cli for both 
the wall modes and the distributed modes are large, so that the ellipticity has only a 
small effect. For this case the smallest possible values of - coi/cli are produced by the 
distributed mode which is associated with the least-damped wall mode (see figure 5 
of Gill 1965) and, although they are large, we include them in table 1 for illustrative 
purposes. 

The competition to be the mode which is most likely to lead to instability lies there- 
fore between the wall modes and the distributed modes for n = 1 and n = 2. We did 
many calculations for larger values of n but found that none of the modes with n > 2 
were as important as n = 2 .  

Table 1 contains the principal results which we obtained for the cases n = 1 and 
n = 2. The columns heided - coi/cli are the smallest possible values so these columns 
could also have been headed eLin as defined by (30); the columns headed a are the 
corresponding wavenumbers. The first four rows for the case n = 1 and the first row 
for the case n = 2 are for the distributed mode which is associated with the least- 
damped wall mode, while the remaining entries for these cases are for the least- 
damped wall mode. 

For each value of n table 1 indicates that emln is a monotone decreasing function of 
R with a finite limit as R -+ 00. This means that, given R and n, the flow will be unstable 
if e > emin. Alternatively it means that, given n and e = emin, R will be the critical 
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n = l  

R 

1000 
2 000 
5 000 

10000 
20 000 
50 000 

100 000 
150 000 
200000 
250000 
300 000 

00 

a 

0.408 
0.223 
0.117 
0.061 
0.252 
0.179 
0.123 
0.093 
0.074 
0.061 
0.052 

-coi /c l i  

0.11428 
0.10296 
0.0 9 7 4 3 
0.09584 
0.08724 
0.07686 
0.07279 
0.07153 
0.07099 
0.07071 
0.07054 
0.0701 

n = 2  n = O  
w -7 

0.559 0.15167 0.298 1.754 
0.607 0.12950 0.149 1.748 
0.462 0.11123 0.060 1.747 
0.364 0.10314 0.030 1.746 
0.274 0.09819 
0.167 0.09491 
0.100 0.09397 

a - coi/cli a -coi /c l i  

0.044 0.09362 
0.037 0.09360 

0.0935 

TABLE 1.  For given R and n we show the smallest possible value of -co i /c l i  = ezin as defined 
by (30) and the corresponding value of a;  to a first approximation the flow is unstable if e > emln. 
Whether an entry is for a wall mode or for a distributed mode is indicated in the text. 

Reynolds number and a will be the critical wavenumber a t  the ‘nose’ of the neutral- 
stability curve. Note that when R is large a is also a monotone decreasing function of 
R and the critical wavelengths are much larger than the mean radius of the pipe. 
The limiting values of - coi/cli as R -+ 00 were found from the convergence of algebraic 
and exponential Shanks transforms. 

I n  general we found that the contributions to cli from the two integrals in the 
numerator of (25) nearly cancelled each other, so that the last term in the numerator 
dominates the value of cli. However the first integral dominates the value of clr, 
which is positive, so that one effect of the ellipticity is to increase the phase speed. For 
example, if n = 1, R = 100000 and a = 0.123, then co = 0.2336-0.03003, c1 = 0.4033 
+ 0.41 163 and the three contributions to c1 from (25) are, in order, 0.4407 + 0.08513, 
- 0.0294 - 0.07573 and - 0.0081 + 0.40223. 

It is clear from table 1 that we are concerned with small values of e2 and this gives 
us some justification for neglecting the terms of order e4 in (26); typically we find that 
lcll is less than twice lcol, so that if e2 is of order 0.1 then (26) probably converges quite 
rapidly. Nevertheless i t  is not really valid to ignore these terms and we should remem- 
ber that  (30) gives us only a first approximation to the relation which must hold 
between (R, n) and the ellipticity for a neutral disturbance to exist. What we can say 
with certainty is that  since cli  is always positive the effect of the ellipticity is to make 
the flow less stable. For large values of aR each coefficient in (26) has the same order 
of magnitude so the radius of convergence of the series is independent of aR. 

4. Conclusions 
We strongly emphasize the tentat,ive nature of the results contained in $ 3  with 

regard to the way in which we have defined emin. We have calculated only the first 
two terms of a regular perturbation series and ideally many more terms should be 
calculated before the series is truncated and the smallest positive zero e = emin is 
found. Further caution is needed because the perturbations are made from modes 
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which exist for the circular pipe flow problem. Thus no information can be gleaned 
about the possible existence of modes which do not exist when the limit e -+ 0 is taken, 
which might give instability for all e except e = 0. 

Bearing the above in mind, there are two principal suggestions which are evident 
from table 1 : first, that  given e and R the mode which is most likely to be unstable 
is the n = 1 least-damped wall mode (or the associated distributed mode if R is less 
than about 15 000); second, that flow in an elliptic pipe will be unstable and a critical 
Reynolds number will exist ife2 is larger than about 0-07, i.e. if the length of the minor 
axis is less than about 96$y0 of the lengbh of the major axis. Thus the cross-section 
of a pipe may not need to differ very much from a circular shape for the flow to be 
unstable to infinitesimal disturbances. 

I thank Dr P. G. Drazin, who originally suggested this problem to me, and the re- 
ferees for their helpful comments. 
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